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SNDERSTANDING THE IMPORTANCE OF PROCESS ALARMS
BASED ON THE ANALYSIS OF DEEP RECURRENT NEURAL
NETWORKS TRAINED FOR FAULT ISOLATION
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4HE IDENTI CATION OF PROCESS FAULTS IS A COMPLEX AND CHAL
LENGING TASK DUE TO THE HIGH AMOUNT OF ALARMS AND WARNINGS
OF CONTROL SYSTEMS 40 EXTRACT INFORMATION ABOUT THE RELA
TIONSHIPS BETWEEN THESE DISCRETE EVENTS WE UTILISE MULTI
TEMPORAL SEQUENCES OF ALARM AND WARNING SIGNALS AS INPUTS
OF A RECURRENT NEURAL NETWORK 2 . . BASED CLASSI ER AND
VISUALISE THE NETWORK BY PRINCIPAL COMPONENT ANALYSIS 4HE
SIMILARITY OF THE EVENTS AND THEIR APPLICABILITY IN FAULT ISOLA
TION CAN BE EVALUATED BASED ON THE LINEAR EMBEDDING LAYER OF
THE NETWORK WHICH MAPS THE INPUT SIGNALS INTO A CONTINUOUS
VALUED VECTOR SPACE 4HE METHOD IS DEMONSTRATED IN A SIM
ULATED VINYL ACETATE PRODUCTION TECHNOLOGY 4HE RESULTS IL
LUSTRATE THAT WITH THE APPLICATION OF 2 . . BASED SEQUENCE
LEARNING NOT ONLY ACCURATE FAULT CLASSI  CATION SOLUTIONS CAN
BE DEVELOPED BUT THE VISUALISATION OF THE MODEL CAN GIVE
USEFUL HINTS FOR HAZARD ANALYSIS

+%97 /2%3
&AULT CLASSI CATION $EEP LEARNING 6ISUALIZATION OF DISCRETE EVENTS
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#HEMOMETRIC MODELS ARE WIDELY APPLIED TO FAULT DETECTION AND ISOLATION OF CHEMICAL PROCESSES ; = ILTHOUGH MOST OF
THESE MODELS UTILISE CONTINUOUS MULTIVARIATE DATA PLANT OPERATORS ARE REQUIRED TO MAKE DECISIONS BASED ON HUNDREDS
OF DISCRETE DATA GENERATED BY THE CONTROL SYSTEMS AS WARNING AND ALARM SIGNALS )N A COMPLEX SYSTEM FAULTS MAY CO
OCCUR IN SEVERAL STATES ; = AND CAN GENERATE LONG SEQUENCES OF WARNING AND ALARM SIGNALS THEREFORE GIVING EFFECTIVE
RESPONSES TO ABNORMAL SITUATIONS IS A CHALLENGING TASK FOR EVEN THE WELL TRAINED OPERATORS )NTELLIGENT FAULT DIAGNOSTICS
THEREFORE REQUIRES THE ANALYSIS OF TEMPORAL RELATIONSHIPS OF DISCRETE EVENTS 40 MEET THIS REQUIREMENT WE PROPOSE
A SEQUENCE BASED FAULT CLASSI CATION ALGORITHM THAT UTILISES THE HIGH AMOUNT OF UNEXPLOITED EVENT TYPE DATA OF ALARM
SYSTEMS

SBISCRETE EVENT BASED FAULT DIAGNOSIS IS AN IMPORTANT AREA OF RESEARCH AS THIS TYPE OF INFORMATION LIKE ALARMS AND
WARNINGS FREQUENTLY OCCUR IN THE PROCESS INDUSTRY ¥ CCORDING TO THE %NGINEERING %QUIPMENT AND —ATERIALS 5SER S
1SSOCIATION %%—51 THE PURPOSE OF AN ALARM SYSTEM IS TO REDIRECT THE OPERATOR S ATTENTION TOWARDS PLANT CONDITIONS
REQUIRING TIMELY ASSESSMENT OR ACTION ; = 4HEREFORE A PROPERLY DESIGNED AND OPERATED ALARM SYSTEM HELPS THE OPERATOR
TO KEEP THE PROCESSES IN THE NORMAL OPERATION RANGE BY INDICATING THE PRESENCE OF ABNORMAL SITUATIONS "*LANKE ETAL GIVE
AN EXTENSIVE OVERVIEW OF FAULT DIAGNOSIS ; = WHILE zAYTOON ET AL FOCUSES ON THE DIAGNOSIS METHODS OF DISCRETE EVENT
SYSTEMS; = 4HE CENTRAL CONCEPTS OF THE DIAGNOSABILITY AND FAULT DIAGNOSIS OF DISCRETE EVENT SYSTEMS WERE DE NED BY
3AMPATHETAL ; =; =

"7 HEN WE BUILD DATA DRIVEN MODELS FOR FAULT DETECTION AND ISOLATION PURPOSES WE NOT ONLY FOCUS ON THE PREDICTION
ACCURACY BUT WE ALSO WOULD LIKE TO UNDERSTAND THE MECHANISM OF THE FAULTS BY UNFOLDING THE RELATIONSHIPS BETWEEN THE
FAULTS AND THE PROCESS VARIABLES ; = "7Z’HEN EVENTS OF DIFFERENT STATES OCCUR AT THE SAME TIME THEY CAN BE VISUALISED
WITH THE USE OF A TIME SERIES CROSS SECTIONAL DATA MATRIX AS IT IS PRESENTED BY #HEN ET AL ; = #ORRELATED EVENTS CAN
BE VISUALISED WITH THE UTILIZATION OF A (INTON DIAGRAM OF JOINT DISTRIBUTIONS ; = 4HE RECENTLY DEVELOPED HIGH DENSITY
ALARM PLOT ($!0 CHART HIGHLIGHTS TOP ALARMS OVER A GIVEN PERIOD AND THE ALARM SIMILARITY COLOR MAP  13#— EXPLORES
THE RELATED AND REDUNDANT ALARMS ;= 4HE METHODS ARE USED FOR THE DETECTION OF CORRELATED ALARMS INREF ; = WHILE
THE APPLICATION OF ! 3#— AND CORRELATION COLOUR MAPS WERE ALSO REPORTED INREF ; = &ROM THE TOOLS OF CHEMOMETRICS
DENDROGRAMS WERE EMPLOYED IN;  =AND; =

Z/URKEY IDEA IS TO DEVELOP A SUPERVISED VISUALISATION ALGORITHM TO EVALUATE THE SIMILARITIES OF THE ALARMS FROM THE
VIEWPOINT OF THE FAULTS "7 E ASSUME THAT AS IN THE CASE OF NATURAL LANGUAGE PROCESSING APPLICATIONS OF DEEP LEARNING
THE VISUALISATION OF THE NETWORK WILL SUPPORT THE UNDERSTANDING OF THE LONG AND SHORT TERM DEPENDENCIES OF THE ALARM
SIGNALS AND THE FAULTS 40 TEST THE PROPOSED METHODOLOGY WE HAVE BUILT A SEQUENTIAL DATA BASED CLASSI ER APPLYING DEEP
LEARNING SOLUTIONS

4HE COMPLEXITY OF THE PROBLEMS AND SIZE OF THE AVAILABLE DATASETS TEND TO BE BIGGER AND BIGGER RESULTING IN THE
INCREASED APPLICATION OF DEEP LEARNING SOLUTIONS IN ENGINEERING ; = CHEMISTRY ;= COMPUTATIONAL BIOLOGY ; = PROCESS
ENGINEERING ; = MACHINE HEALTH MONITORING ; = ANOMALY DETECTION ; = AND FAULT DETECTION AND ISOLATION ; = ; =
&OR A DETAILED DESCRIPTION OF ARTI CIAL NEURAL NETWORK BASED APPROACHES INCLUDING THE DISTINGUISH OF CLASSICAL SHALLOW
NEURAL NETWORKS AND DEEP LEARNING SOLUTIONS SEEREF ; = &ROM THE WIDE RANGE OF MODELS WE APPLY RECURRENT NEURAL
NETWORKS 2. .S ; =USING LONG SHORT TERM MEMORY ,34— UNITS; = ~/UR MODEL USES AN EMBEDDING LAYER ALAYER
WITH LINEAR TRANSFORMATIONS TO MAP THE ONE HOT ENCODED EVENTS INTO A CONTINUOUS VALUED VECTOR SPACE S5SING SUCH
EMBEDDING IS A STATE OF THE ART APPROACH TO SENTIMENT ANALYSIS OF TEXTS 4HE MAIN BENE T OF THIS LINEAR MAPPING IS THAT
THE ANALYSIS OF THE VECTOR SPACE CAN BE USED TO STUDY THE CONTEXTUAL MEANING OF THE WORDS ; = ; = ""ASED ONTHIS
ANALOGY WE ASSUME THAT SIMILAR WARNINGS AND ALARM SIGNALS WILL BE CLOSE TO EACH OTHER IN THIS EMBEDDING SPACE ; = 7E
APPLY ALINEAR EMBEDDING ASSUMING THAT THE WEIGHTS OF THE SIMILAR EVENTS WILL BE CORRELATED SO PRINCIPAL COMPONENT
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ANALYSIS O#1 CAN BE USED TO VISUALISE THE HIDDEN STRUCTURE OF THE EVENTS AND EVALUATE THE SIGNI  CANCE OF THESE SIGNALS

40 DEMONSTRATE THE APPLICABILITY OF THE PROPOSED APPROACH WE EXTENDED THE EXISTING SIMULATOR OF A VINYL ACETATE
PRODUCTION TECHNOLOGY ; =BY IMPLEMENTING ~ DIFFERENT MALFUNCTIONS TO THE PROCESS TO GENERATE EASILY REPRODUCIBLE
RESULTS AND STIMULATE THE DEVELOPMENT OF FAULT DIAGNOSIS AND EVENT PREDICTION ALGORITHMS 4HE ~ MALFUNCTIONS WERE
CHOSEN BASED ON PROCESS RELEVANT KNOWLEDGE AS WE WANTED TO IMPLEMENT MALFUNCTIONS WITH A SIGNI - CANT EFFECT ON THE
OPERATION IN VARIOUS LOCATIONS OF THE PROCESS SSING THIS SIMULATOR WE CAN RECORD THE DYNAMIC CHARACTERISTIC FOLLOWING
THESE FAULTS AND WE CAN CREATE THE LOG  LE OF THE OCCURRING ALARMS AND WARNINGS

4HE ROADMAP OF THE PAPER IS AS FOLLOWS )N 3ECTION WEDE NE THE INPUT OF THE CLASSI ERS AS SEQUENCES OF THE
TEMPORAL RELATIONSHIPS OF THE EVENTS 3ECTION PRESENTS THE CLASSI CATION TASK AND 3ECTION DESCRIBES WHY WE
ANALYSE THE EMBEDDING LAYER OF THE MODEL ¥LTHOUGH MAINLY THE PREDICTION ACCURACY IS IN THE FOCUS OF THE APPLICATION OF
DEEP LEARNING MODELS WE STUDY THE APPLICABILITY OF O# I TO EXTRACT INFORMATION RELATED TO THE HIDDEN STRUCTURE OF THE
PROBLEM IN 3ECTION "7 E INTRODUCE THE CASE STUDY IN 3ECTION 4HE RESULTS ARE DISCUSSED IN 3ECTIONS

\ &15,4#,133)&)#14)/ . 1 _$6)351,)314)/ . /& 02/#%33 1,123

\ &ORMULATION OF THE EVENT SEQUENCE BASED FAULT CLASSI ER

/URKEY IDEA IS THAT THE SEQUENCES OF PROCESS ALARMS AND WARNINGS CONTAIN ENOUGH INFORMATION ABOUT THE TECHNOLOGY TO
SERVE AS AN INPUT OF A CLASSI ER DESIGNED TO ESTIMATETHE yx = ¢ ;:::;Cn. CLASSLABELOF THEFAULTS WHEREK = ;:::;N
AND REPRESENTS THE CURRENTLY EXAMINED SEQUENCE OF THE PROCESS

”

Yk =F., «

7EDE NETHE ¢ SEQUENCES BASED ON STATES REPRESENTED BY s =< pv;a > DATA COUPLES WHERE pv IS THE IN
DEX OF THE PROCESS VARIABLE AND a REPRESENTS THE RELATED STATE SIGNALS SUCH ASa 2 fLow Alarm;Low Warning;
Target Range;HighWarning;HighAlarmg EG se =< ColumnTopTemperature;High Alarm > INEVENTCAN
BE REPRESENTED BY ATRIPLET SUCHASe =<'s; st; et >DE NING WHICH s STATE IS TAKING PLACE IN A TIME INTERVAL BETWEEN THE
st STARTING TIME ANDTHE et ENDINGTIME EG <se; ;> ¥ VISUALILLUSTRATION OF THE DISCRETE EVENTS AND THEIR POSSIBLE
TEMPORAL RELATIONSHIPS CAN BE SEEN IN &IGURE  AND THE EXAMPLE EVENT LOG DATABASE FORMED FROM THESE EVENTS CAN BE
SEEN IN4ABLE ¥ TEMPORAL DATABASE CONTAINS THE EVENT IDENTI CATION NUMBER EVENTID THE IDENTI CATION NUMBER OF
THE OCCURRING STATE STATE ID AND THE STARTING AND ENDING TIME OF THE GIVEN EVENT IN ARBITRARY BUT UNI ED UNIT OF TIME

"7 E ARE LOOKING FOR SEQUENCES WHICH CAN RE  ECT TEMPORAL RELATIONSHIPS AMONG THE STATES AND THE EFFECT OF FAULTS
4HEREFORE WE DE NE A TIME WINDOW IN WHICH WE ASSUME CAUSAL DEPENDENCY &OR THE DESCRIPTION OF THE TYPE OF THE
TEMPORAL RELATIONSHIP BETWEEN THE SEQUENCE ELEMENTS WE CONNECT THE STATES BY ONE OF THE FOLLOWING FOUR TEMPORAL
PREDICATES

JFst =st ANDet =et THENe equale

)F st et window THENe beforee

JFst <st <et et ORst st <et <et THENe duringe
JFst st <et <et ORst <st <et et THENe overlape

&OR SIMPLICITY WE WILL USE THE NOTATIONE B D AND O FORequal before during ANDoverlap RESPECTIVELY 5SING
THESE SYMBOLS WE CANDE NE TEMPORAL INSTANCESAS = e 5 e WHERER fE; B; D; OgISATEMPORAL PREDICATE
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&)>52% 4HE VISUAL ILLUSTRATION OF DISCRETE EVENTS IN AN EXAMPLE EVENT LOG DATABASE 4HE HORIZONTAL AXIS REPRESENTS
THE TIME WHILE THE VERTICAL AXIS ILLUSTRATES THE DIFFERENT STATES OF APROCESS EG se¢ =< ColumnT op Temperature;
High Alarm > “7E SHOULD NOTE THAT A STATE CAN OCCUR IN MULTIPLE EVENTS

41 % %XAMPLE FOR THE EVENT LOG DATABASE REPRESENTING AN EVENT WITH ITS ID THE OCCURRING STATE IN THE SPECI C
EVENT AND THE STARTING AND ENDING TIME OF THE EVENT

%VENTID  3TATEID  3TARTING TIME;MIN= %NDING TIME ;MIN=

€ S
e S
€ S
e S
€ S
e S
e S
e S

8OREXAMPLE BASED ON THE EVENTLOG DATABASE OF 4ABLE  THE FOLOWING TEMPORAL INSTANCES CANBEDE NED ¢ 3 e ;e D
ee 3e:e 3e 3IMIARY LONGER SEQUENCES CANBE GENERATED EG =6 e e e 4HE SEQUENCES
GENERATED FROM THE EVENT LOG DATABASE ARE STORED IN A SEQUENCE DATABASE

40 UTILISE THE SEQUENCES OF THE SYMBOLS AS INPUTS OF THE NEURAL NETWORK WE ENCODE THE SYMBOLS OF THE STATES
S = fs ;s ;i sng g AND THE TEMPORAL PREDICATES 2 fE; B; D; O g INTO VECTORS OF NUMERICAL VALUES &ROM A TECHNICAL
VIEW RST WE ENCODE EVERY ELEMENT IN THE SEQUENCES EVENT AND TEMPORAL PREDICATES AS WELL TO A NUMERICALFORM AND
THIS NUMERICAL FORM 1S TRANSFORMED TO THE SEQUENCE OF ONE HOT ENCODED VECTORS

4HE ONE HOT ENCODING IS BASED ON BINARY VECTORS OHf( WHERE ONLY ONE BIT RELATED TO THE ENCODED SIGNALIS RED
AMONGTHE ng = ns  nr BITS WHERE ng REPRESENTS THE NUMBER OF STATES AND ng STANDS FOR THE NUMBER OF DIFFERENT
TEMPORAL PREDICATES
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4HE EMBEDDING LAYER IS A LINEAR TRANSFORMATION WHICH TRANSFORMS THE ONE HOT ENCODED VECTOR OF EACH SEQUENCE
ELEMENT INTO A VECTOR WITH THE SPECI ED DIMENSION ne WITH CONTINUOUS VALUES

t — t
Xt =7 OHl

&IGURE ~ GIVES A SIMPLE DIDACTIC EXAMPLE OF THE FORMULATION OF THE INPUT DATASET OF THE EMBEDDING LAYER 3UPPOSE
THATTHE k TH ANALYSED SEQUENCE IS THE SIMPLE OVERLAPPING RELATIONSHIP OF THE EVENTSe ANDe ILLUSTRATED IN &IGURE ~ 4HE
STATES REPRESENTED IN THESE EVENTS AND THE OVERLAPPING TEMPORAL RELATIONSHIP ARE TRANSFORMED INTO A ONE HOT ENCODED
VECTOR WITH THE DIMENSION OF ng = = SUPPOSING WE HAVE NO OTHER STATES OR TEMPORAL PREDICATES IN OUR EXAMINED
DATASET THEREFOREng = ANDnr =  %ACH OF THESE ELEMENTS WILL RE ONE SPECI C BIT OF THE ONE HOT ENCODED VECTOR
FORMING OH, OH, AND OH, RESPECTIVELY "7E TRANSFORM THESE ONE HOT ENCODED VECTORS OF EACH SEQUENCE ELEMENT TO
VECTORS OF CONTINUOUS VALUES WITH A SPECI ED DIMENSION ne THE EMBEDDING DIMENSION IN THE EMBEDDING LAYER 4HESE
VECTORS FORM THE INPUT VARIABLES OF THE DEEP LEARNING LAYER

&)>52% 1 SIMPLE AND DIDACTIC EXAMPLE FOR THE FORMULATION OF THE INPUT VARIABLES OF THE DEEP LEARNING LAYER 4HE
ELEMENTSOF THE | SEQUENCE ARE TRANSFORMED TO THE FORM OF ONE HOT ENCODED VECTORS WITH THE DIMENSION OF THE
NUMBER OF THE TYPE OF SEQUENCE ELEMENTS IN THE EXAMINED DATABASE 7 E TRANSFORM THESE ONE HOT ENCODED VECTORS TO
VECTORS OF CONTINUOUS VALUES WITH THE HELP OF THE EMBEDDING LAYER

AHEREFORE THE DEEP LEARNING BASED CLASSI ER CAN BE FORMULATED AS
Yk =X

WHERE Xy REPRESENTS THE SEQUENCE OF Xik i = T VECTORS THE CONTINUOUS VALUED REPRESENTATIONS OF THE SEQUENCE
ELEMENTS EVENTS AND THEIR TEMPORAL PREDICATES CALCULATED BY THE LINEAR EMBEDDING LAYER AND Yy}, STANDS FOR THE ESTIMATED
CLASS LABEL

7 ETRAIN ANEURAL CLASSI ERTO CALCULATE THE P,y = cj jXk " FAULT PROBABILITIES AND ASSIGN THE CLASS LABEL THAT HAS THE
HIGHEST PROBABILITY SEE &IGURE
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&) 52% 4HE STRUCTURE OF THE LONG SHORT TERM MEMORY UNIT BASED NEURAL CLASSI ER 4HE INPUT VARIABLES OF THE LAYER
OF THE LONG SHORT TERM MEMORY UNITS REPRESENTED BY THE Xik i = T VECTORS ARE THE CONTINUOUS VALUED
REPRESENTATIONS OF THE SEQUENCE ELEMENTS CALCULATED BY THE LINEAR EMBEDDING LAYER "7 E TRANSFORM THE OUTPUT ACTIVITY
VALUES OF THIS LONG SHORT TERM MEMORY ,34— UNIT LAYER Hx TO PROBABILITY VALUES BY ALINEAR LAYER AND WE ACCEPT THE
CLASS WITH THE HIGHEST PROBABILITY AS THE ROOT CAUSE OF THE SEQUENCE

Yk = MJ_/-\XP"yk =y X"

4HE RECURRENT NEURAL NETWORK MAPS THE X\ INPUT SEQUENCE INTO A H, SEQUENCE OF REAL VALUES 4HIS MAPPED SEQUENCE

OF HIDDEN VARIABLES IS REPRESENTED AS A Hy, VECTOR OF THE ACTIVITIES OF THE ,34— UNITS Hy = h ':::'hrk]U AND USED TO

CALCULATE THE FAULT PROBABILITIES BY THE SOFTMAX ACTIVATION FUNCTION WHERE ny IS THE NUMBER OF , 34— UNITS

exp ,,Hk"TWS;j bj
NT
exp ,,Hk"TWS;j bj
j:

P.Yk =CjiXk"=P,yk =CjjH" =

WHERE Ws;j REPRESENTS THE j TH COLUMN VECTOR OF THE "7’ WEIGHT MATRIX OF THE OUTPUT LAYER OF THE NETWORK AND by
REPRESENTS THE BIAS 4HE DENOMINATOR OF %QUATION IS THE SUM OF THE ELEMENTS WITH DIFFERENT j INDICES THEREFORE
CONSTANT AND THE RESULTING CLASS LABEL IS PROPORTIONAL TO THE NOMINATOR

Yie = MAXP yi = cjix"/ MAX exp HT W by

&IGURE  HIGHLIGHTS THAT THE SEQUENCES ARE PROCESSED BY A DEEP RECURRENT NEURAL NETWORK WHERE THE NETWORK IS
UNROLLED ny TIMES AND EACHOFTHE RSTT UNITS PROCESS A SINGLE SEQUENCE ELEMENT REPRESENTED AS A CONTINUOUS VALUED
VECTOR WITH DIMENSION ne  ¥LTHOUGH THE UNITSFROMT TO ny SEEM TO HAVE NO SIGNI  CANT EFFECT ON THE CLASSI CATION TASK
THE CORE PRINCIPLE OF THE , 34— UNITS IS THE HANDLING OF LONG TERM DEPENDENCIES AND THESE ADDED UNITS CAN IMPROVE THE
ACCURACY OF THE CLASSI CATION

N THE FOLLOWING SUBSECTION WE PRESENT HOW THE HIDDEN LAYER ENSURES THE EF  CIENT CALCULATION OF THE Hy VECTOR THAT
IS INFORMATIVE TO BUILD THE CLASSI ER BASED ON SEQUENTIAL DATA
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\ 2ECURRENT NEURAL NETWORK LAYER WITH LONG SHORT TERM MEMORY UNITS

2ECURRENT NEURALNETWORKS 2 . .S ARE DESIGNED TO CAPTURE TIME DEPENDENCY IN SEQUENTIALDATA ; = 4HESE MODELS
WERE POPULAR AFTER THE INTRODUCTION OF 2 . . SWITH ,34— LONG SHORT TERM MEMORY UNITS ; = PROPOSED TO OVERCOME THE
DIF CULTIES OF HANDLING LONG TERM DEPENDENCY AND VANISHING GRADIENT ; =

4HE , 34— LAYER MAPS THE X SEQUENCE INTO Hy, THE VECTOR OF THE ACTIVITIES SO IT HAS EQUAL OR MORE UNITS THAN THE SUM
OF THE NUMBER OF EVENTS AND THE CORRESPONDING TEMPORAL PREDICATES BETWEEN THEM IN THE INPUT SEQUENCE 4HEREFORE
SEQUENCES CONTAINING MORE EVENTS THAN THE SPECI EDT VALUE ARE TRUNCATED AND THE LENGTH OF THE INPUT SEQUENCE IS
T THE LENGTH OF A VECTOR IS EQUAL TO THE NUMBER OF ELEMENTS IN IT HERET AND WE NEED TO COUNT THE CORRESPONDING
TEMPORAL PREDICATES AS WELL ~ 4HIS IS DUE TO THE FACT THAT A SIMPLE SEQUENCE e 5 e CONTAINING ONLY TWO PROCESS
STATES IS CONSIST OF = SEQUENCE ELEMENTS INCLUDING THE TEMPORAL RELATIONSHIP 3IMILARLY THE SEQUENCE OF
e 5 e 5 e CONTAINS ONLY THREE PROCESS STATES BUT THE NUMBER OF ELEMENTS IN THE SEQUENCE IS EQUALTO =
PIECES 4HEREFORE THE PART IS IMPLEMENTED TO TAKE INTO CONSIDERATION THE MISSING TEMPORAL PREDICATE AFTER THE LAST
PROCESS STATE OF THE SEQUENCE

&IGURE  SHOWS THE STRUCTURE OF THE , 34— UNIT 4HE KEY FEATURE OF THE MODEL IS THAT ALL , 34 — UNITS HAVE A CELL STATE

C& ;= THAT CAN BE USED TO FORWARD INFORMATION TO THE NEXT UNIT 4HEREFORE AN , 34— UNIT INTERACTS WITH ITS NEIGHBOURING

CELLS BY GATES BY EITHER ADDING OR REMOVING INFORMATION TO THIS MEMORY OW

&)>52% 3TRUCTURE OF A SINGLE LONG SHORT TERM MEMORY UNIT 4HE INPUT SEQUENCE ELEMENT XI( AND THE ACTIVITY
hL AND CELL STATE CIE VALUES OF THE PREVIOUS LONG SHORT TERM MEMORY UNIT ARE MODI ED WITH USE OF THE SIGMOID
AND HYPERBOLIC TANGENT tanh FUNCTIONS OF THE FORGET fk‘ INPUT ili AND OUTPUT 0; GATES 4HE CALCULATED ACTIVITY htk
AND CELL STATE Cﬁ VALUES ARE TRANSFERED TO THE NEXT LONG SHORT TERM MEMORY UNIT WHILE THE ACTIVITY VALUE IS DIRECTLY
OUTPUT ASWEILL 4HE —58 BOX INTHE GURE INDICATES THE FORMING OF ONE SIGNAL FROM THE hL AND XL EXPRESSIONS AS IN

t oyt
»hk ’Xk

4HE , 34— UNIT RECEIVES THE ACTIVATION OF THE PREVIOUS CELL hf( THE Xf( INPUT THAT RELATES TO THE t TH ELEMENT OF THE
SEQUENCE AND THE Cﬁ CELL STATE OF THE PREVIOUS UNIT 4HE FORGET GATE fkt DETERMINES HOW MUCH INFORMATION OF THE
EARLIER UNITS SHOULD BE KEPT
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f= ,7oht . by

b REPRESENTS THE BIAS VECTOR OF THE NEURONS AND IN ALL OF THE FOLLOWING EQUATIONSASWELL AND  REPRESENTS THE APPLIED
SIGMOID FUNCTION

4HE STATE AND THE ACTIVITY OF THE UNIT WILL BE UPDATED USING THE X}( AND THE PRECEDING CELL ACTIVATION hf( 4HIS IS
REALISED WITH THE SIGMOID FUNCTION OF THE INPUT GATE 4HE WHOLE PROCESS IS ILLUSTRATED IN &IGURE

if = LZpht Xt by
Cy = TANH,7Zohb ;XE. be”
4HE , 34— UNIT UPDATES ITS OLD CELL STATE C{  USING THE FORGET GATE f,' AND THE (TERED INPUT GATE i{
Cy =fiCp isCy
4HE ACTIVITY OF THE , 34— UNIT IS CALCULATED BASED ON THE CELL STATE AND THE OUTPUT GATE SIGNALS

t — . n
0, = "7o»hf< ,XLW bo

t
hk

t tr
of TANH,C!

\ %MBEDDING LAYER BASED ANALYSIS OF THE ALARMS AND THE ANALYSIS OF NODE ACTIVITIES

/UR WORK IS MAINLY MOTIVATED BY THE PURPOSE TO ANALYSE THE SIMILARITIES OF ALARM AND WARNING SIGNALS 4HEREFORE WE
INTRODUCE AN EMBEDDING LAYER TO THE NETWORK AS THE CONCEPT OF THE EMBEDDING LAYER IS TO MAP THE SEQUENCE ELEMENTS
INTO A CONTINUOUS VECTOR SPACE WHICH WE APPLY FOR THE VISUALISATION OF THE EVENTS &IRST WE TRANSFORM EVERY CHARACTER OF
THE SEQUENCE INTO ONE HOT ENCODED VECTORS 4HEN WITH THE LINEAR TRANSFORMATION OF THE EMBEDDING LAYER WE TRANSFORM
THESE ONE HOT ENCODED VECTORS OF EACH SEQUENCE ELEMENT INTO A VECTOR OF CONTINUOUS VALUES AS IT IS PRESENTED IN
%QUATION  TCCORDING TO THE PRESENTED EQUATION THIS LINEAR TRANSFORMATION MEANS A SIMPLE MATRIX MULTIPLICATION IN
PRACTICE WHERE THE DIMENSION OF THE RESULTED VECTOR ISne THE EMBEDDING DIMENSION CHOSEN ACCORDING TO PREFERENCES
SEE &IGURE WITH CONTINUOUS VALUES BETWEEN ~ AND

4HE WEIGHTS OF THE EMBEDDING LAYER ARE TRAINED SIMULTANEOUSLY WITH THE , 34— UNITS THEREFORE THE RESULTED WEIGHT
MATRIX "7 STORES INFORMATION RELATED TO THE CONTEXTUAL CONNECTION BETWEEN THE SYMBOLS AND THE CLASSI CATION PROBLEM

7 ISMULTIPLIED BY ONE HOT VECTORS THEREFORE EVERY ROW OF THE MATRIX REPRESENTS A GIVEN SYMBOL W; 4HE SIMILARITIES
sim OFTHE ALARMS s;;sj CAN BE EVALUATED BASED ON THE %UCLIDEAN DISTANCES OF THESE VECTORS d = W;; W;

d Wi Wj

sim,si;sj” = q
max

WHERE dmax REPRESENTS THE MAXIMUM %UCLIDEAN DISTANCE BETWEEN THE ROWS OF THE "7 MATRIX AND W; AND Wj REPRESENTS
THEi THANDj THROWS OF THE "7 MATRIX RESPECTIVELY
"7 E USE THE RESULTED PAIRWISE SIMILARITIES TO GENERATE A DENDROGRAM TO FORM CLUSTERS OF THE ALARM SIGNALS
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7 HEN THE DIMENSIONALITY OF THE EMBEDDING LAYER IS TWO IT CAN BE DIRECTLY USED TO VISUALISE THE RELATIVE POSITIONS OF
THE ALARMS 7HENne > WE CAN USE ONE OF THE SEVERAL DATA VISUALISATION TECHNIQUES OF CHEMOMETRICS )N THE PRESENT
WORK WE UTILISED PRINCIPAL COMPONENT ANALYSIS O#1! SINCE IT CAN ALSO VISUALISE THE CORRELATION OF THE COLUMNS OF THE 7
MATRIX WHICH INFORMATION IS USEFUL FOR THE SELECTION OF THE PROPER SIZE OF THE EMBEDDING DIMENSION

4HE OUTPUT LAYER OF THE NETWORK IS BASED ON THE LINEAR COMBINATION OF NODE ACTIVITIES AS IT WAS DESCRIBED IN %QUATIONS

40 GET AN INSIGHT INTO THE CLASSI CATION PROBLEM WE CAN PERFORM A PRINCIPAL COMPONENT ANALYSIS OF THE ( =
»h ;21 hy.T MATRIX OF THE ACTIVITIES WHERE Hy = h, ;::: ;hEU k = ;:::;N AND MAP THE SEQUENCES INTO A TWO
DIMENSIONAL SPACE "7 HEN THESE SEQUENCES ARE LABELED THE SIMILARITY OF THE FAULTS CAN BE REVEALED FROM THE RESULTED PLOT

SIMILARLY TO &IGURE

\ #13%345%9

7 E DEVELOPED A WELL DOCUMENTED SIMULATION STUDY BY THE EXTENSION OF AN EXISTING 6! C TECHNOLOGY SIMULATOR TO PROVIDE
AREPRODUCIBLE BENCHMARK PROBLEM OF ALARM BASED FAULT CLASSI  CATION )N THE FOLLOWING WE WILL DESCRIBE THE TECHNOLOGY
THE SIMULATOR AND THELOG LES 4HE DE NITION OF THE FAULT CLASSI CATION PROBLEM WILL BE FOLLOWED BY THE DETAILS OF THE
2 . . AND THE EXPERIMENTS FOR THE DETERMINATION OF THE OPTIMAL MODEL STRUCTURE  &INALLY BASED ON THE RESULTING MODEL
WE VISUALISE THE ALARMS AND THE FAULTS BY THE PRINCIPAL COMPONENT ANALYSIS OF THE EMBEDDING LAYER AND THE NODE ACTIVITIES
4HE DISCUSSION OF THE RESULTS WILL ILLUSTRATE THAT THE INFORMATION GENERATED BY THE PROPOSED METHODOLOGY CAN BE USEFUL
IN THE RISK ANALYSIS OF COMPLEX PROCESSES

\ &AULT CLASSI CATION PROBLEM OF THE VINYL ACETATE PROCESS

4HE USED DYNAMIC SIMULATOR OF THE VINYLACETATE 61C PROCESS CONTAINS ~ CONTROLED AND ~ MANIPULATED VARIABLES
THEREFORE IT IS COMPLEX ENOUGH TO DE  NE FAULT CLASSI  CATION PROBLEMS ; = 4HE PROCESS CONTAINS ~ BASIC UNIT OPERATIONS
AND SEVEN CHEMICALCOMPONENTS ETHYLENE # (. OXYGEN / ANDACETICACID (¥C #( #// ( ARE CONVERTED TO VINYL
ACETATE #( #(/#/#( WITHWATER ( / AND CARBON DIOXIDE #/ BYPRODUCTS ETHANE # ( ENTERS WITH THE
ETHYLENE FEED AS INERT  SEE &IGURE
4HE VAPORISER IS IMPLEMENTED AS A WELL MIXED UNIT WITH SEVEN COMPONENTS WITH A GAS INPUT CONTAINING THE MIXTURE
OF THEFRESH# ( STREAM AND THE ABSORBER VAPOUR EF UENT AND A LIQUID INPUT FROM THE ((XCTANK 4HE CATALYTIC PLUG
OW REACTOR IS IMPLEMENTED AS A DISTRIBUTED SYSTEM WITH TEN ELEMENTS IN THE AXIAL DIRECTION )NSIDE OF THE REACTOR THE
EXOTHERMIC REACTIONS OF %QUATION ~ AND  TAKE PLACE

CH CHCOOH O TCH =CHOCOCH HO

CH O & CO HO

4HE PROCESS CONTAINS A FEED EF UENT HEAT EXCHANGER &% (% WHERE A SMALL TIME CONSTANT IS ADDED TO THE EXIT
TEMPERATURE SENSORS TO SIMULATE THE DYNAMICS OF THE PROCESS T FTER A PRESSURE LETDOWN VALVE WHICH IS NOT SHOWN IN
&IGURE  THEEF UENTISLED TO A SEPARATOR 4HE SEPARATOR IS MODELED AS A PARTIAL CONDENSER AND THE LEAVING LIQUID AND
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Recycle Gas @

Purge

Co, Purge

Oxygen Feed E
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Ethylene
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X
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=
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Vaporizer
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Recycle | mHAC Tank
R W)

Acetic Acid
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&)752% &LOW CHART OF THE VINYL ACETATE PRODUCTION TECHNOLOGY 4HE NUMBERS IN CIRCLE RED SHOW THE TYPE OF THE
IMPLEMENTED FAULT

GAS STREAM  OW RATES ARE CALCULATED WITH A STEADY STATE EQUILIBRIUM ~ ASH EQUATION 4HE GAS STREAM ENTERS TO THE BOTTOM
PART OF THE ABSORBER UNIT AFTER COMPRESSION 4HE ABSORBER IS DIVIDED INTO TWO PARTS 4HE LIQUID STREAM ENTERING THE
BOTTOM PART IS THE LIQUID STREAM LEAVING THE TOP PART AND A CIRCULATION STREAM  4HE GAS INLET OF THE TOP PART IS LEAVING FROM
THE BOTTOM OF THE ABSORBER WHILE THE LIQUID INLET COMES FROM THE ((¥CTANK 4HERE ISA#/ REMOVALSYSTEM IMPLEMENTED
AFTER THE ABSORBER ! GAS REMOVAL SYSTEM TAKES PLACE BEFORE THE AZEOTROPIC DISTILLATION TOWER TO REMOVE ALL THE LIGHT
COMPONENTS FROM THE INLET OF THE TOWER WHICH COMES FROM THE BOTTOMS OF THE SEPARATOR AND ABSORBER UNITS 4HE GAS
REMOVAL SYSTEM IS MODELED AS AN IDEAL COMPONENT SEPARATOR WHICH COMPLETELY SEPARATES THE GAS COMPONENTS /
#/ # ( # ( TOSENDTHEM BACK TO THE INLET OF THE COMPRESSOR WHILE THE LIQUID STREAM 61C ( / (!C ENTERSTHE
DISTILLATION TOWER 4HE COLUMN IS HIGHLY NONLINEAR WITH ~ THEORETICAL STAGES WHOSE LIQUID HOLDUP CAN VARY IFTER THE
CONDENSER A DECANTER IS IMPLEMENTED FOR THE SEPARATION OF THE LIQUID PHASES 4HE LIQUID RECIRCULATION STREAM AND THE
(YCINLET STREAM ARE MIXED IN THE (XC TANK

4HE ORIGINAL — 14, 1** MODEL OF THE SIMULATOR PUBLISHED INREF ; = CONTAINED VE DISTURBANCES STEP CHANGE IN

THE COMPOSITION OF # ( INTHEFRESH# ( FEED STREAM FROM TO MOLE FRACTION  LOSS OF COLUMN FEED FOR

MINUTES ~ LOSS OF FRESH (! CFEED STREAM FOR MINUTES ~ LOSS OF FRESH / FEED STREAM AN ANALYZER IS OFF LINE

EXCEPTTHE / ANALYZER WHILE + ROLY AND ¥BONYI; =STUDIED THE EFFECTS OF THREE MALFUNCTIONS ,OSSOF (ICFEED

,OSSOF/ FEEDAND  ,0SSOFCOLUMN FEED AND STUDIED THE EFFECT OF PRODUCT CHANGES WITH THE USE OF THE SO CALLED
/PERATING 3TATE —ATRIX /3— CONTAINING THE RANDOMLY GENERATED VALUES OF THE FOLLOWING MANIPULATED VARIABLES

/PERATING STATE STARTTIME MIN
/PERATING STATE END TIME MIN

3ETPOINT OF THE REACTOR OUTPUT TEMPERATURE #
(_/ COMPOSITION IN THE COLUMN S BOTTOM

GAPORIZER FEED kmol

#HANGE OF THE# (C CONCENTRATION OF THE # ( FEED FROM TO NOTRANGE BASED ONLY TWO STATES
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4HE MANIPULATOR VALUES IN THE CASE OF THE

ORIGINAL CODE AND DOCUMENTATION DOES NOT CONTAIN THEM NEITHER

4AG OF FAULT

#ONTROLLED VARIABLE

(1C4ANK ,EVEL
(EATER %XIT 4EMP
3EPARATOR , EVEL
#OMPRESSOR %XIT 4EMP

Y BSORBER , EVEL
#IRCULATION 3TREAM 4EMP
3CRUB 3TREAM 4EMP

# ( INTHE ”AS 2ECYCLE
&% % COT%XIT 4EMP
SECANTER 1QUEOUS , EVEL
#OLOUMN ""OTTOM , EVEL

—ANIPULATED VARIABLE

(YCFRESH FEED &LOW 2ATE
2EACTOR OREHEATER (EAT &LOW
3EPARATOR , IQUID %XIT &LOW 2ATE
#OMPRESSOR (EATER (EAT &LOW
1 BSORBER , IQUID %XIT &LOW 2ATE
1 BSORBER 3CRUB ((EAT &LOW
#IRCULATION #O0O0LER (EAT &LOW
OURGE &LOW 2ATE

""YPASS &LOW 2ATE

1 QUEOUS ORODUCT &LOWRATE
#OLOUMN **OTTOM %XIT &LOWRATE

—AN VARIABLE VALUE
IN CASE OF FAULT

IMPLEMENTED FAULTS MEASUREMENT UNITS ARE NEGLECTED AS THE

—ODERN CHEMICAL PLANTS OFTEN HAVE HISTORICALLOG  LES OF INCOMING ALARMS AND WARNINGS AND THESE LOG LES CAN BE

STRUCTURED TO BUILD TRAINING DATA FOR FAULT CLASSI ERS (ISTORICAL PROCESS DATA CAN BE ENRICHED OR REPLACED BY EVENTS
GENERATED BY SIMULATORS SINCE MOST OF THE ADVANCED PROCESS TECHNOLOGIES ARE ALSO SUPPORTED BY OPERATOR TRAINING
SYSTEMS OR OTHER MODEL BASED SOLUTIONS

40 TEST OUR METHODOLOGY WE GENERATED A DATABASE OF DIFFERENT EVENT SEQUENCES 4HE INSERTED FAULTS WERE
RELATED TO THE MALFUNCTION OF THE CONTROLLER OR MANIPULATOR AS THE MANIPULATED VALUE OF THE PROCESS VARIABLE REMAINED
CONSTANT FOR A SPECI ED TIME 4ABLE  SHOWS THE VALUES OF THE MANIPULATORS IN CASE OF FAULTS

! MINUTE TIME WINDOW WAS USED TO UTILISE EVENTS THAT WE CONSIDER AS DIRECT CONSEQUENCES OF THE MALFUNCTION
4HE THRESHOLD VALUES OF NORMAL OPERATING CONDITIONS FOR EACH MEASURED PROCESS VARIABLES WERE DETERMINED BASED ON
THE ANALYSIS OF NORMAL OPERATION

40 ILLUSTRATE THE INFORMATION CONTENT OF DISCRETE EVENTS WE GENERATED THREE DIFFERENT DATASETS AND TESTED THEIR
APPLICABILITY IN THE SOLUTION OF THE CLASSI CATION PROBLEM

S$ATASET I 3IGNALS RELATED TO LOW AND HIGH ALARMS TWO STATES PROCESS VARIABLE
SPATASET ™ 3IGNALS RELATED TO LOW AND HIGH ALARMS AND WARNINGS FOUR STATES PROCESS VARIABLE
S$ATASET # )DENTICALTO ** BUT THE NORMAL OPERATION IS ALSO DE NED ASAN EVENT  VE STATES PROCESS VARIABLE

40 EXAMINE THE INFORMATION CONTENT OF TEMPORAL RELATIONSHIPS BETWEEN EVENTS WE GENERATED TWO CASES INTHE

RST WE INCLUDE THE TEMPORAL RELATIONSHIPSAND N THE SECOND WE NEGLECT THEM 4HEREFORE WE GENERATED SIX DATASETS
LABELED AS $ATASET I S$ATASET#  RESPECTIVELY

4HE HORIZONTAL AXIS OF &IGURE  SHOWS THE NUMBER OF SEQUENCES THAT CAN FOLLOW THE GIVEN MALFUNCTION WHILE THE

VERTICAL AXIS SHOWS THE MAXIMAL LENGTH OF THESE SEQUENCES &IGURE  ILLUSTRATES THE FAULTS BASED ON THE LENGTH OF THE
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LONGEST SEQUENCE THAT FOLLOWS THE GIVEN FAULT AND AS THE NUMBER OF DIFFERENT SEQUENCES THAT CAN FOLLOW THE GIVEN FAULT
THE SIZE OF THE SEQUENCE 1S EQUAL TO THE NUMBER OF EVENTS IN IT WE DO NOT COUNT THE TEMPORAL RELATIONSHIPS - 4HE CORE
PRINCIPLE OF THE  GURE IS THAT FAULTS WITH FEWER TYPES AND SHORTER LENGTH OF CHARACTERISTIC SEQUENCES CAN USUALLY BE
TREATED AS TRIVIAL BY THE PROCESS EXPERTS #ONSIDERING THIS THE MORE COMPLICATED SEQUENCES ARE IN THE UPPER RIGHT PART OF
THE GRAPHS 4HE INFORMATION CONTENT OF THE DATABASES INCREASES FROM SATASET ! TO SATASET # AS THE NUMBER AND SIZE OF

THE SEQUENCES SHOW AN INCREASING TREND

4HE NUMBERING OF THE DIFFERENT ALARM TAGS FOLLOWS AN ASCENDING ORDERFROM TO ~ ACCORDING TO 4ABLE  $URING THE
GENERATION OF DISCRETE EVENTS WE ADDED AN EXTRA DIGIT TO THE END OF EACH VARIABLE TAG INDICATING THE TYPE OF THE EVENT
HAPPENED ON THAT GIVEN VARIABLE AS IT CAN BE SEEN IN 4ABLE ~ /F COURSE FROM $ATASET ! THE EVENTS OF WARNINGS AND THE
EVENT OF THE TARGET OPERATING RANGE ARE MISSING THEREFORE THE LAST DIGIT CANNOT BE OR  WHILE FROM S$ATASET ** THE
EVENT OF THE TARGET OPERATING RANGE IS MISSING CONSEQUENTLY THE LAST DIGIT CANNOT BE

4HEREFORE 4ABLE  SHOWS THE CAUSES WHY THE DIFFERENT EVENTS ON THE VARIABLES PRESENTED IN 4ABLE  OCCUR AS EVENTS
ON THE CONTROLLED VARIABLES CAN BE CONSIDERED AS THE EFFECTS OF MALFUNCTIONS

@ Dataset A
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g o2

o

el

B I‘I .3

=

o4 cﬁ '7 cg .g

& 10

E Py . Pkl . . .
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8 Dataset B

g 15 T T T T ) T T

03‘1 5 -1 -3 .2

gm o & ¢
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oD 518
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] Dataset C
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- o8

s 1

S 15 o6 *

c 7 o4

['F) L)

- =10 11

% 10 8, . . . . .

= 130 140 150 160 170 180 190 200

Number of sequences

&)>52% 4HE CHARACTERISATION OF FAULTS BASED ON THE NUMBER AND MAXIMALLENGTH OF THE FOLLOWING SEQUENCES 4HE
IDENTI CATION AND CLASSI CATION OF MALFUNCTIONS THAT GENERATE LONGER AND MORE TYPE OF SEQUENCES OF EVENTS ARE MOST
LIKELY TO BE PROBLEMATIC 4HE LENGTH OF THE SEQUENCE IS EQUAL TO THE NUMBER OF EVENTS IN IT AND WE DO NOT COUNT THE

TEMPORAL PREDICATES



$/27 /%41,

\ TPPLICATION OF THE PROPOSED RECURRENT NEURAL NETWORK FOR FAULT CLASSI CATION

4HE IMPLEMENTATION OF THE SIMULATOR AND THE DATA PREPROCESSING WAS CARRIED OUT IN — 14, I** ENVIRONMENT 4HE
IMPLEMENTATION OF THE STRUCTURE OF THE DEEP NEURAL NETWORK AND THE TRAINING OF IT WAS CARRIED OUT IN OYTHON APPLYING
+ERAS AND USING 4ENSOR  OW AS BACKEND "7 E TRAINED THE MODEL USING A . VIDIA * E&ORCE ~ 48 7" ZO5 WITHTHE
APPLICATION OF #5% 1 $URING THE TESTING OF THE DIFFERENT MODEL STRUCTURES ~ FOLD CROSS VALIDATION WAS APPLIED AND
EVALUATED THE NUMBER OF EPOCHS WAS SET TO WITH AS BATCH SIZE

\ 4HE APPLICABILITY OF DIFFERENT DATASETS

&IGURE  HIGHLIGHTS THE INFORMATION CONTENT OF DATASETS 4HE NUMBER OF SEQUENCES THAT CHARACTERISE A GIVEN FAULT THEIR
LENGTH AND THE PRESENCE OF TEMPORAL RELATIONSHIPS CAN ALL IN UENCE THE EFFECTIVENESS OF THE PROPOSED , 34 — NETWORK
40 DETERMINE THE MOST APPROPRIATE SET OF SYMBOLS WE TESTED THE EF CIENCY OF NETWORKS UNDER UNIFORM CONDITIONS
WITH ~ ,34— UNITSAND VEEVENTS IN ASEQUENCE LONGER SEQUENCES ARE TRUNCATED AND WITH FOUR AS THE DIMENSION OF
EMBEDDING &IRSTLY WE USED DATASETS INCLUDING TEMPORAL PREDICATES !CCORDING TO &IGURE ~ $ATASET** IS THE MOST
APPLICABLE FOR FURTHER INVESTIGATIONS WITH APPROXIMATELY OF AVERAGE ACCURACY CORRECT CLASSI CATIONRATE "7 E CAN
CONCLUDE THAT THE INCORPORATION OF WARNINGS CAN IMPROVE THE EFFECTIVENESS OF THE PROPOSED METHODOLOGY BUT THE NORMAL
OPERATING RANGE AS AN EVENT SHOWED A DECREASED CORRECT CLASSI  CATION RATE "7E PROVED THE EFFECT OF DIFFERENT DATASETS
BY STATISTICAL VARIANCE ANALYSIS ONE WAY I _/61 AND FOUND A VERY LOW SIGNI CANCEVALUE p = : E THEREFORE WE
NEGLECT THE NULL HYPOTHESIS THAT THE TYPE OF THE DATASET HAS NO SIGNI CANT EFFECT ON THE CORRECT CLASSI  CATION RATE

O
N
L

-

92

90

88

(o]
- -
86
84
82 1
A/l B/1 cn
Datasets

Correct Classification Rate (%)

&)>52% 4HE EFFECT OF THE INFORMATION CONTENT OF DATASETS ON THE EFFECTIVENESS OF THE PROPOSED NETWORK WITH
LONG SHORT TERM MEMORY UNITS ~ VE EVENTS IN A SEQUENCE AND FOUR AS EMBEDDING DIMENSION DATASETS WITH TEMPORAL
PREDICATES SERVED AS THE BASIS OF ANALYSIS ¥ CCORDING TO THE RESULTS SBATASET** IS THE MOST APPLICABLE FOR FURTHER
INVESTIGATIONS AS IT SHOWS THE HIGHEST CORRECT CLASSI CATION RATE 4HEREFORE THE CHARACTERISATION OF THE VARIABLES WITH
ALARM AND WARNING SIGNALS SHOWED IMPROVED ACCURACY COMPARING TO THE RESULT OF SATASET I WITH ONLY THE ALARM
SIGNALS HOWEVER THE INCLUDING OF TARGET OPERATING RANGES AS EVENTS SHOWED DECREASED CORRECT CLASSI  CATION RATE

"7 E STUDIED THE EFFECT OF THE NUMBER OF EVENTS | E THE LENGTH OF THE SEQUENCE T THE EVENTSAFTERT ARE TRUNCATED
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AND THE INCORPORATION OF TEMPORAL PREDICATES FOR $ATASET ** WHICH SHOWED THE HIGHEST CORRECT CLASSI  CATION RATE IN THE
PREVIOUS ANALYSIS TCCORDING TO &IGURE ~ THE INCORPORATION OF MORE THAN THREE EVENTS INDICATED NO IMPROVEMENT IN
THE PERFORMANCE OF THE CLASSI ER AND THE TEMPORAL PREDICATES DO NOT SIGNI CANTLY IN  UENCE THE RESULTS "7 E APPLIED
TWO WAY ! _ /61 FOR THE DETERMINATION OF DIFFERENCES IN PERFORMANCE BUT THE ANALYSIS INDICATED THAT THE INCLUDING OF
TEMPORAL PREDICATES OR THE APPLICATION OF MORE EVENTS DOES NOT RESULT IN BETTER PERFORMANCE AS CAN BE SEEN IN 4ABLE

(OWEVER STANDARD DEVIATIONS ARE NOT WITHIN IN THE CASE OF THE NUMBER OF EVENTS IT IS VERY CLOSE TO IT 4HE GOOD
CORRECT CLASSI CATION RATE AFTER ONLY A FEW EVENTS SHOWS THAT A WELL TRAINED NEURAL CLASSI ER CAN CLASSIFY A FAULT AFTER ONLY
AFEW ALARMS SUGGESTING PROMISING INDUSTRIAL APPLICATION POSSIBILITIES IN THE FUTURE 40 REDUCE MODEL COMPLEXITY WE
APPLIED FOUR EVENTS AND THE DATASET WITHOUT TEMPORAL PREDICATES IN THE FOLLOWING INVESTIGATIONS

With R
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93 — T
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r_au o1 R —
090
5 89
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© §
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88
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&)752% 4HE EFFECT OF THE NUMBER OF EVENTS WITH AND WITHOUT THE INCLUDING OF TEMPORAL PREDICATES 4HE
SEQUENCES LONGER THAN THE SPECI ED NUMBER OF UNITS ARE TRUNCATED ! CCORDING TO THE APPLIED TWO WAY I _ /61 THE
APPLICATION OF MORE EVENTS NOR THE TEMPORAL PREDICATES RESULT IN BETTER CORRECT CLASSI  CATION RATE NEITHER )N THE
FOLLOWING INVESTIGATIONS WE APPLIED FOUR EVENTS WITHOUT THE INCLUDING OF THE TEMPORAL RELATIONSHIPS

&IGURE  ILLUSTRATES THE EFFECT OF , 34— UNITNUMBER !CCORDING TO THE APPLIED ONE WAY I _/61 WE CAN NEGLECT THE
NULL HYPOTHESIS THAT THE NUMBER OF , 34 — UNITS HAS NO SIGNI' CANT EFFECT ON THE CORRECT CLASSI  CATION RATE OF THE MODEL
WITH ASIGNI CANCE VALUEOF p = : TCCORDING TO &IGURE  THE MODELWITH ~ ,34— UNITS SLIGHTLY OUTPERFORMS THE
OTHERS THEREFORE WE APPLIED THIS STRUCTURE FOR FURTHER ANALYSIS

4HE SIZE OF THE EMBEDDING LAYER CAN ALSO GREATLY AFFECT THE ACCURACY OF THE MODEL SINCE THIS LAYER MAPS THE ONE HOT
BINARY VECTOR REPRESENTED SYMBOLS OF THE STATES INTO A CONTINUOUS VECTOR SPACE ! CCORDING TO &IGURE ~ THE HIGHEST
ACCURACY IS REACHED BY MAPPING INTO A FOUR DIMENSIONAL EMBEDDING SPACE (OWEVER THE ONE WAY I _ /61 DID NOT VERIFY
THIS INCREASED CORRECT CLASSI  CATION RATE AS THE SIGNI' CANCE VALUE WAS ABOVE p= :  WEAPPLIED THIS STRUCTURE FOR
THE TESTING OF THE MODEL

"7 E DEMONSTRATE THE PERFORMANCE OF THE DESCRIBED NEURAL CLASSI  ER WITH A CONFUSION MATRIX IN &IGURE ~ /ZNLY TWO
SIMILAR FAULTS ARE DIF CULT TO BE DISTINGUISHED THE M ANDTHE ™M FAULTS 4HIS RESULT IS IN GOOD CORRESPONDENCE WITH THE
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&)>52% 4HE EFFECT OF LONG SHORT TERM MEMORY UNIT NUMBER IN CASE OF $SATASET ™" USING ~ FOLD CROSS VALIDATION
4HE INCORPORATION OF MORE THAN  UNITS HAD NO SIGNI CANT EFFECT ON THE CORRECT CLASSI CATION RATE
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&)752% 4HE EFFECT OF THE NUMBER OF UNITS IN THE EMBEDDING DIMENSION IN CASE OF $ATASET **

RESULTS PRESENTED IN &IGURE ~ NAMELY THE PROPOSED ALGORITHM CAN ACCURATELY PREDICT THE ROOT CAUSE OF EVENTS AFTER ONLY
AFEW SEQUENCE ELEMENTS WHICH IS HIGHLY ADVANTAGEOUS FROM THE VIEW OF THE INDUSTRIAL APPLICATION 4HIS RESULT CAN ALSO
IMPLY THAT THE FEW CHARACTERISTIC VARIABLES THAT SHOULD BE MONITORED IN ORDER TO EFFECTIVELY IDENTIFY THE FAULTS CAN BE
DETERMINED WITH THE ANALYSATION OF THE MODEL
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&)752% #ONFUSION MATRIX SHOWING THE ACCURACY OF THE CLASSI ER 4HE PERCENTAGES WERE CALCULATED AFTER THE
CLASSI CATION OF SEQUENCES FOLLOWING EACH OF THE FAULTS 4HE RESULTS INDICATE THAT FAULTS th AND THE  th HAVE SIMILAR
EFFECTS MAKING THEM DIF  CULT TO IDENTIFY

\ %MBEDDING LAYER BASED ANALYSIS OF PROCESS ALARMS

7 E VISUALISE THE CONTEXTUAL INFORMATION OF SEQUENCE ELEMENTS BY THE PRINCIPAL COMPONENT ANALYSIS OF THE "7 WEIGHT
MATRIX
4HE RESULTS OF O# ! NOT ONLY SHOWS THE NEIGHBOURING RELATIONS OF THE ALARMS AND WARNINGS IN THIS SPACE WITH REDUCED
DIMENSION BUT IT ALSO REPRESENTS ITS SIGNI CANCE IN THE CLASSI CATION PROBLEM &IGURE  ILLUSTRATES THAT THE MOST
SIGNI CANT EVENTS HAVING LARGE (OTELLING S 4 3QUARE VALUES ARE MAINLY THE LOWER AND UPPER ALARMS (OWEVER THE GURE
CAN SEEM TO BE OVERCROWDED THE AIM OF THE = GURE IS THE VISUAL ILLUSTRATION OF THE RESULTS AND ALL THE PRESENTED DATASETS
AND THE PROGRAMS ARE AVAILABLE IN THE SUPPLEMENTARY MATERIAL OF THE ARTICLE
4HIS RESULT OFFERS AN OUTSTANDING OPPORTUNITY FOR THE PRIORITISATION OF INCOMING WARNINGS AND EVENTS TO FACILITATE
THE WORK OF THE OPERATORS 4ABLE  SHOWS THE FAULT THAT THESE ALARMS CAN FOLLOW ¥ CCORDING TO THE TABLE MOST OF THESE
EVENTS APPEAR IN THE CASE OF ONLY ONE OR ONLY A FEW MALFUNCTIONS 4HEREFORE THE VISUALISATION HIGHLIGHTS THAT THE PRINCIPAL
COMPONENT ANALYSIS OF THE GIVEN ALARMS CAN EXPLORE THE CHARACTERISTIC EVENTS OF THESE FAULTS &ROM AN OPERATIONAL POINT
OF VIEW WE CAN SEE THAT THE HIGH COMPRESSOR EXIT TEMPERATURE STATE AND THE HIGH CIRCULATION STREAM TEMPERATURE
STATE EVENT TAGS ARE IN THE SAME DIRECTION AT THE UPPER LEFT CORNER OF THE DIAGRAM THEREFORE THEY SHOULD INDICATE
SIMILAR EFFECTS TCCORDING TO 4ABLE  THE HIGH COMPRESSOR EXIT TEMPERATURE STATE INDICATE THE PRESENCE OF THE th
FAULT WHICH MEANS BAD COMPRESSOR HEAT OW 4HE HIGH CIRCULATION STREAM TEMPERATURE STATE ALSO INDICATES THE
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&)>52% 4HE RESULT OF PRINCIPAL COMPONENT ANALYSIS ON THE WEIGHT MATRIX OF THE EMBEDDING LAYER THE LAST DIGIT
OF EVENT TAGS ACCORDING TO 4ABLE ,OW ILARM ,OW "ZARNING (IGH 7 ARNING (IGH 1LARM

PRESENCE OF THE t FAULT TOGETHER WITH THE PRESENCE OF THE M FAULT THE BAD CIRCULATION STREAM TEMPERATURE 4HEREFORE
AS BAD COMPRESSOR EXIT TEMPERATURE 1S EXPERIENCED THE CONTROLLER OF THE SCRUB STREAM TRIES TO STABILIZE THE TEMPERATURE
OF THE ABSORBER THE STREAM COMING FROM THE COMPRESSOR ENTERS THE ABSORBER COLUMN ~ ((OWEVER IT IS NOT AN OUTLIER
OF THE RESULTS OF O# 1! IT IS INTERESTING TO SEE THAT THE LOW CIRCULATION STREAM TEMPERATURE STATE IS IN THE SAME
DIRECTION AS THE HIGH COMPRESSOR EXIT TEMPERATURE STATE AND THE HIGH CIRCULATION STREAM TEMPERATURE STATE
AND INDICATES SIMILARLY THE PRESENCE OF THE M AND M FAULTS 3IMILARLY THE SEPARATOR LEVEL HIGH ALARM STATE HEATER
EXIT TEMPERATURE HIGH WARNING STATE ~ AND THE &% (% HOT STREAM EXIT TEMPERATURE HIGH WARNING AND HIGH ALARM  STATE
AND SHOW SIMILARITY 4HIS SIMILARITY CAN ALSO BE EXPLAINED BY AN ENGINEERING POINT OF VIEW THESE TEMPERATURES
HIGHLY IN UENCE THE LEVEL OF THE SEPARATOR )F WE TAKE INTO CONSIDERATION THE RESULTS OF 4ABLE  IT APPEARS ALL THESE EVENTS
ARE IN CONNECTION WITH THE  th FAULT

T SIMILAR ANALYSIS CAN BE CARRIED OUT ON THE DENDROGRAM IN &IGURE THAT REPRESENTS THE %UCLIDEAN DISTANCE
BETWEEN THE ROW VECTORS OF THE EMBEDDING LAYER 4HE COLOURS IN &IGURE  INDICATE THE CLUSTERS OF PROCESS SIGNALS BUT
NO FORMER PROCESS KNOWLEDGE BASED INFORMATION WAS FOUND TO BE RELEVANT TO EXPLAIN THE FORMED CLUSTERS

&OR EXAMPLE THE PAIR OF THE HIGH ALARM OF GAS RECYCLE STREAM PRESSURE  STATE AND THE HIGH ALARM OF VAPORIZER
PRESSURE STATE HIGHLIGHTS THE PROBLEMS OF THE GAS CYCLE A BAD PRESSURE CAN EFFECT THE WHOLE PROCESS 4HE LOW ALARM
LEVELFORTHEH O CONTENT OF THE COLUMN BOTTOM STATE AND THE COLUMN BOTTOM LEVEL STATE ARE ALSO CLOSE TO
EACH OTHER SINCE THESE STATES ARE BOTH CONNECTED TO THE BOTTOM OF THE SEPARATION COLUMN I SIMILAR CONNECTION CAN BE
SEEN BETWEEN THE HIGH WARNING OF REACTOR EXIT TEMPERATURE STATE AND THE SCRUB STREAM TEMPERATURE STATE
THEY ARE CONNECTED TO EACH OTHER ACCORDING TO THE DENDROGRAM  3IMILARLY THE HIGH WARNING OF HEATER EXIT TEMPERATURE

STATE  AND &% (% HOT EXIT TEMPERATURE STATE DRAW ATTENTION ON THE CONTROL PROBLEMS OF THE REACTOR INLET SINCE A
HIGH ALARM BEFORE THE REACTOR STILL APPEARS IN THE OUTLET TEMPERATURE OF THE &% (% UNIT
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&)752% 4HE DENDROGRAM OF ALARMS AND WARNINGS CALCULATED APPLYING MEAN LINKAGE OF %UCLIDEAN DISTANCES OF
THE ROW VECTORS OF THE WEIGHT MATRIX OF THE EMBEDDING LAYER THE LAST DIGIT OF EVENT TAGS ACCORDING TO 4ABLE ,0W
1ARM ,OW "ZARNING (IGH 7 ARNING (IGH TLARM  4HE COLOURS OF THE DIFFERENT STATES INDICATE THE FOUND
CLUSTERS BUT NO PROCESS RELEVANT KNOWLEDGE HAS BEEN PAIRED TO THE CLUSTERS

\ TNALYSIS OF THE SIMILARITY OF PROCESS FAULTS BASED ON THE ACTIVITIES OF THE LONG SHORT
TERM MEMORY UNITS

40 BETTER UNDERSTAND THE RESULTS OF THE ANALYSIS OF THE EMBEDDING LAYER AND TO STUDY HOW THE ACTIVATION VALUES OF THE
HIDDEN LAYER OF , 34 — UNITS REPRESENT THE PROCESS FAULTS WE APPLIED PRINCIPAL COMPONENT ANALYSIS TO THESE ACTIVATION
VALUES AS WELL

4HE ANALYSIS OF THE EIGENVALUES OF THE (C MATRIX OF THE NODE ACTIVITIES CAN GIVE INFORMATION ABOUT THE PROPER NUMBER
OF ,34— UNITS 3ECTION TCCORDING TO &IGURE ~ THE EIGENVALUES CON RM THE RESULT OF THE EXAMINATION OF THE EFFECT
OF ,34— UNITNUMBER SEE &IGURE VE UNITS ARE SUF  CIENT TO REPRESENT THE CLASSI CATION PROBLEM WHILE ELEVEN UNITS
DESCRIBE ALMOST ENTIRELY THE CUMULATIVE VARIANCE OF THE VARIABLES

AHE RESULTS OF THE PRINCIPAL COMPONENT ANALYSIS OF THE ACTIVITY VALUES OF ,34— UNITS &IGURE ARE IN GOOD CORRE
SPONDENCE WITH THE CLASSI CATION PERFORMANCE ILLUSTRATED BY CONFUSION MATRIX SHOWN IN &IGURE )T IS INTERESTING TO SEE
THATTHE  t FAULT HAS TWO DISTINCT CLUSTERS ACCORDING TO THE RESULTS OF O#1 4HE GURE CON RMS THE DIF CULT ISOLATION OF
THE th FAULT 4HE FACT THAT THIS FAULT IS MOSTLY SITUATED AT THE CENTRE OF O# ! PROJECTION SUGGESTS THE LACK OF AN INFORMATIVE
STATE FOR THIS FAULT 4HE O# ¥ ANALYSIS OF THE ALARM AND WARNING SIGNALS &IGURE CON RMSTHISRESULT ALSO SEE 4ABLE
3UCH ANALYSIS MAY IMPLY THE LACK OF INFORMATIVE ALARMS AND WARNINGS FOR THE DETECTION OF A GIVEN FAULT 4HEREFORE THE
PROPOSED APPROACH CAN GIVE HINTS FOR THE DEVELOPMENT OF THE CONTROL SYSTEM
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&)752% %IGENVALUES OF THE ( ACTIVITY MATRIX CONTAINING THE ACTIVITY VALUES OF THE LAYER OF THE LONG SHORT TERM
MEMORY UNITS !CCORDING TOTHE GURE THE APPLICATION OF FOUR COMPONENTS CAN SUF CIENTLY DESCRIBE THE VARIANCE OF THE
ACTIVITY VALUES
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41" % 4HE NUMBERING OF CONTROLLED VARIABLES
- AME OF GARIABLE 4AG OF GARIABLE
O INTHE 2EACTOR )NLET
~ AS 2ECYCLE 3TREAM ORESSURE
(1C4ANK ,EVEL
6APORIZER , EVEL
GAPORIZER ORESSURE
(EATER %XIT 4EMPERATURE
2EACTOR %XIT 4EMPERATURE
3EPARATOR , EVEL
3EPARATOR 4EMPERATURE
3EPARATOR GAPOR &LOWRATE
#OMPRESSOR %XIT 4EMPERATURE
1BSORBER , EVEL
1 BSORBER 3CRUB &LOWRATE
#IRCULATION 3TREAM 4EMPERATURE
1 BSORBER #IRCULATION &LOWRATE
3CRUB 3TREAM 4EMPERATURE
CO INTHE ~AS 2ECYCLE
C H INTHE ~AS 2ECYCLE
&% (% (OT %XIT JEMPERATURE
H O INTHE #0LUMN **OTTOM
th TRAY 4EMPERATURE
SBECANTER 4EMPERATURE
S$ECANTER ZRGANIC , EVEL
$ECANTER TQUEOUS ,EVEL
#OLUMN **OTTOM , EVEL
,1QUID 2ECYCLE &LOWRATE
61C%
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41 % 4HE DIGIT ADDED TO THE NUMBER OF VARIABLE INDICATING THE TYPE OF EVENT
4YPE OF EVENT 1 DDED DIGIT
,OW ALARM
,OW WARNING
AARGET OPERATING RANGE
(IGH WARNING
(IGHALARM

41 % 4W0 WAY I _ /61 ANALYSIS SHOWS THAT THE TEMPORAL PREDICATES DO NOT SIGNI CANTLY IN UENCE THE ACCURACY
OF THE CLASSI ER

&ACTORS 3IGNI' CANCE GALUE P
AEMPORAL PREDICATES
- UMBER OF EVENTS
BY
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41 % /UTLIER EVENTS OF O# ! AND THE FAULTS CAUSING THESE EVENTS —OST OF THE EVENTS OCCUR AFTER ONLY ONE OR VERY
LESS NUMBER OF FAULTS THEREFORE THE PROPOSED NEURAL CLASSI ER COULD HIGHLIGHT THE CHARACTERISTIC ALARMS OF THE PROCESS
GIVING A GOOD OPPORTUNITY FOR THE PRIORITISATION OF THESE SIGNALS 4HE TAG OF THE FAULTS CAN BE SEEN IN 4ABLE

%VENT - AME OF EVENT 4YPE OF EVENT &AULTS
#IRCULATION 3TREAM 4EMPERATURE (IGHALARM

$ECANTER TQUEOQUS ,EVEL (IGH ALARM
S$ECANTER TQUEOUS ,EVEL (IGH WARNING

3EPARATOR , EVEL (IGHALARM

&% % (OT %XIT AEMPERATURE (IGHALARM
(EATER %XIT 4EMPERATURE (IGH WARNING

&% % (OT %XIT AEMPERATURE (IGH WARNING

2EACTOR %XIT AEMPERATURE ,OW ALARM
(EATER %XIT 4EMPERATURE ,OW ALARM
3CRUB 3TREAM 4EMPERATURE ,OW ALARM
3CRUB 3TREAM 4EMPERATURE (IGH ALARM
$ECANTER /RGANIC ,EVEL (IGHALARM
(1C4ANK ,EVEL ,OW ALARM

#OMPRESSOR %XIT 4EMPERATURE (IGH WARNING
#OMPRESSOR %XIT 4EMPERATURE (IGHALARM

I BSORBER , EVEL (IGHALARM
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&)752% 4HE PRINCIPAL COMPONENT ANALYSIS OF THE ACTIVITY VALUES OF THE LONG SHORT TERM MEMORY UNIT LAYER 4HE
VISUALISATION OF THE ACTIVITY VALUES HIGHLIGHTS THE WELL SEPARABLE FAULTS AND CAN GIVE SUGGESTIONS ON POORLY MONITORED
MALFUNCTIONS )N THIS CASE THE N FAULT REASONABLY NEEDS MORE INFORMATIVE ALARMS AND WARNINGS AS THIS FAULT IS IN THE
CENTRE OF THE GRAPH AND ITS ELEMENTS SHOW A HIGH DISTRIBUTION IN THIS REDUCED DIMENSION SPACE
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4HE HIGH AMOUNT OF ALARMS AND WARNINGS GENERATED BY THE CONTROL SYSTEMS OVERLOAD THE OPERATORS SO THE IDENTI CATION
AND PROPER HANDLING OF MALFUNCTIONS IS A COMPLEX AND CHALLENGING TASK

40 EXTRACT THE SOMETIMES HIDDEN INFORMATION OF DISCRETE EVENTS IN MODERN CHEMICAL PLANTS AND THE TEMPORAL
RELATIONSHIPS CONNECTING THEM WE UTILISED MULTI TEMPORAL SEQUENCES OF ALARM AND WARNING SIGNALS AS INPUTS OF LONG
SHORT TERM MEMORY ,34— UNIT BASED RECURRENT NEURAL NETWORKS TRAINED FOR CLASSI CATION OF PROCESS FAULTS AND
VISUALISED THE INPUT AND OUTPUT LAYERS OF THE MODEL

4HE EMBEDDING LAYER IS TRAINED SIMULTANEOUSLY WITH THE LAYER OF THE LONG SHORT TERM MEMORY UNITS AND THE OUTPUT
LAYER RESULTING IN A SUPERVISED MAPPING OF THE ALARM AND WARNING SIGNALS INTO A CONTINUOUS VECTOR SPACE 4HIS SUPERVISED
MAPPING ENSURES THAT THE PRINCIPAL COMPONENT ANALYSIS OF THE WEIGHT MATRIX OF THE EMBEDDING LAYER CAN HIGHLIGHT THE
SIGNI' CANCE OF THE EVENTS FROM THE VIEWPOINT OF THE PROCESS FAULTS

7 ITH THE PRINCIPAL COMPONENT ANALYSIS OF THE ACTIVITY VALUES NOT JUST THE FAULTS BECOME COMPARABLE BUT IT ALSO GIVES
USEFUL INFORMATION ABOUT THE PROPER NUMBER OF LONG SHORT TERM MEMORY UNITS 4HE RESULTED MODEL COMPLEXITY IS IN GOOD
CONSISTENCY WITH THE ANALYSIS OF THE EFFECT OF THE NUMBER OF UNITS IN THE EMBEDDING LAYER

TCCORDING TO OUR KNOWLEDGE THE PROPOSED CASE STUDY IS THE RST THAT DEMONSTRATES THAT THE ANALYSIS OF THE
EMBEDDING LAYER AND THE ACTIVITY VALUES OF , 34 — UNITS CAN GIVE RECOMMENDATIONS FOR THE MONITORING OF MALFUNCTIONS
AND OFFERS AN OUTSTANDING OPPORTUNITY FOR THE PRIORITISATION OF INCOMING WARNINGS AND EVENTS TO FACILITATE THE WORK OF
THE OPERATORS

-/ —%_#,1452%

2. . RECURRENT NEURAL NETWORK

,34—  LONG SHORT TERM MEMORY

O#1  PRINCIPAL COMPONENT ANALYSIS

61C  VINYLACETATE

y  TYPEOFFAULTy = ¢ ;:::;Cn, RELATEDTOTHEk THSEQUENCE OF EVENTS

yk  PREDICTED CLASS LABEL OF THE FAULTS

¢j " TYPEFAULT

ne  NUMBER OF FAULT TYPES

s STATE OF THE TECHNOLOGY

pv  INDEX OF THE PROCESS VARIABLE

a  THERELATED STATE SIGNALS

e EVENT

st STARTING TIME OF AN EVENT

et ENDING TIME OF AN EVENT

k kM SEQUENCE OF STATES
THE SET OF STATES
ARBITRARY TEMPORAL PREDICATE BETWEEN EVENTS
EQUAL TEMPORAL PREDICATES BETWEEN EVENTS
BEFORE TEMPORAL PREDICATES BETWEEN EVENTS
DURING TEMPORAL PREDICATES BETWEEN EVENTS
OVERLAP TEMPORAL PREDICATES BETWEEN EVENTS

O g wm=x W”»
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Xk THE NUMERICALREPRESENTATION OF | SEQUENCE

P.Yk =CjjX” THE CONDITIONAL PROBABILITY OF THE GIVEN FAULT

Hk  VECTOR OF THE ACTIVITIES OF THE , 34 — UNITS

ny  THENUMBEROF ,34— UNITSINTHE 2 . .

T LENGTH OF THE INPUT SEQUENCE

7s  WEIGHT MATRIX OF THE OUTPUT LAYER OF THE NETWORK REFERRING TO THE APPLIED SOFTMAX FUNCTION
C!  CEIL STATEOFTHE t'™" ,34— UNIT

fl  FORGETGATE OF THE t'" ,34— UNIT

7+  WEIGHT MATRIX OF THE FORGET GATE

b THE BIAS VECTOR OF THE CORRESPONDING NEURONS

it INPUTGATEOF THEt" ,34— UNIT

ol OUTPUTGATE OF THE tt ,34— UNIT

7o  WEIGHT MATRIX OF THE OUTPUT GATE

OH,  ONE HOT BINARY VECTOR REPRESENTATION OF THE t " SYMBOL OF THE k {" SEQUENCE
ns  THE NUMBER OF STATES IN THE ~ TEMPORAL DATABASE

ng  NUMBER OF TYPES OF TEMPORAL PREDICATES BETWEEN EVENTS

no  NUMBER OF BITS IN THE ONE HOT BINARY VECTOR

ne  DIMENSION OF THE EMBEDDING LAYER

7 WEIGHT MATRIX OF EMBEDDING LAYER

sim,si;sj”  SIMILARITY OF THE ALARMS

dmax  THE MAXIMUM %UCLIDEAN DISTANCE AMONG THE ROWS OF THE 7 MATRIX

Y4+ /77, %57 %—% .43
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